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Abstract
Introduction Neuropsychological assessment of cognitive functioning is a crucial part of clinical care: diagnosis, treatment 
planning, treatment evaluation, research, and prediction of long-term outcomes. The Equivalent Score (ES) method is used 
to score numerous neuropsychological tests. The ES0 and the ES4 are defined respectively by the outer tolerance limit and 
the median. The intermediate ESs are commonly calculated using a z-score approach even when the distribution of neuropsy-
chological data is typically non-parametric. To calculate more accurate ESs, we propose that the intermediate ESs need to 
be calculated based on a non-parametric rank subdivision of the distribution of the adjusted scores.
Material and methods We make three simulations to explain the differences between the classical z-score approach, the 
rank-based approach, and the direct subdivision of the dependent variable.
Results The results show that the rank procedure permits dividing the region between ES0 and ES4 into three areas with 
the same density. The z-score procedure is quite similar to the direct subdivision of the dependent variable and different 
from the rank subdivision.
Conclusions By subdividing intermediate ESs using the rank-subdivision, neuropsychological tests can be scored more 
accurately, also considering that the two essential points for diagnosis (ES = 0 and ES = 4) remain the same. Future norma-
tive data definition should consider the best procedure for scoring with ES.

Keywords Psychometrics · Neuropsychological tests · Statistics · Nonparametric · Classification

Introduction

Neuropsychological assessment of cognitive function-
ing is a key part of clinical care: diagnosis and treatment 
planning, treatment evaluation and research [1], predic-
tion of long-term outcomes [2], the individual ability 
to perform activities of daily living [3], and effects of 
neurosurgery [4]. Based on clinical history, observations, 
initial medical history, and behavioural aspects, it is pos-
sible to choose neuropsychological tests to employ for 
each patient. Neuropsychological tests must be psycho-
metrically sound to adequately identify a deficit, accom-
panied by well-defined standard procedures and accurate 

normative data [5]. The quantitative evaluation of indi-
viduals’ neuropsychological functioning via psychometric 
tests requires the raw scores to be scored based on the 
performance of a representative population. In this way, 
we can compare the performance of a single individual 
against the performance of a population with similar 
demographic characteristics (age, education, and gender).

To standardize scores, normative values must be 
derived from a sample of healthy individuals [6]. Many 
standardization methods have been proposed to establish 
normative values, and many of them rely on a non-par-
ametric approach [6]. Neuropsychological data may be 
affected by ceiling/floor effects and high inter-individual 
variability. Therefore they do not generally conform to 
distributional assumptions [7, 8]. For this reason, non-
parametric approaches should be preferred when drawing 
norms. The most well-known non-parametric approach 
is the Equivalent Score (ES) method [9]. The ES method 
represents regression-based approaches to standardize 
neuropsychological tests by non-parametrically drawing 
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cutoffs and controlling for inferential errors [10]. The 
overall procedure to extract the ESs for a test comprises 
several steps. The first one entails examining an undi-
vided, demographically composite sample, and calcu-
lating the contribution of the demographic variables 
through multiple regression. Then the original scores 
have to be adjusted by adding/subtracting that contribu-
tion. This permits obtaining test norms based on a rela-
tively small number of participants, in the order of hun-
dreds, compared to the thousands required for covering 
samples of any age, education, and gender group.

The second step requires deciding with controlled risk 
whether an adjusted score passes a specific threshold 
that can be determined using the non-parametric toler-
ance limits (npTL). Two limits have to be set from the 
sampled adjusted scores distribution. The outer tolerance 
limit (OTL) is the cutoff that guarantees (with 95% prob-
ability) that no more than 5% of the reference population 
score is actually below it. The inner tolerance limit (ITL) 
is the cutoff that guarantees (again with 95% probability) 
that no less than 5% of the reference population score 
below it. Therefore, a diagnosis of pathology is rather 
safe if the score is below the OTL, and a diagnosis of 
normality is also rather safe if the score is above the ITL. 
The area between the two limits represents the uncer-
tainty of the classification accuracy.

Finally, starting from the npTLs, the ESs can be deter-
mined. The ESs represents an ordinal five-point scale 
that maps percentile ranks of adjusted scores of a test 
[9]. As the nature of ESs is non-parametric, they do not 
depend on the test scores dispersion. As such, ESs pos-
sess the properties of the ordinal scale. The ESs permit 
drawing clinical judgements of the score obtained from 
a test: ESs equal to 0 and 1 meaning defective and bor-
derline, respectively; ES equals to 2 meaning low-end 
normal and ESs equal to 3 and 4 meaning normal. The 
OTL represents the limit of the ES equal to 0; the median 
value of the test score distribution corresponds to the 
limit of the ES equal to 4. These are the two fixed points 
in the ES computation. The ESs that lie between ES0 and 
4 can be identified by subdividing the range of adjusted 
scores between the OTL and the median.

To determine the intermediate limits — ES from 1 to 3 
— practitioners have mostly relied on a parametric model 
(i.e. a z-score-based approach) because of the “possible 
normality of the underlying ability” [7–9]. However, 
relying on this approach may be problematic. Indeed, 
determining the intermediate ESs using a parametric 
approach creates a methodological inconsistency with the 
non-parametric approach used to determine the two fixed 
ESs: As explained, the ES0 and ES4 are derived using the 
OTL and the median of the distribution, both of which 
are determined using distribution ranks. Additionally, and 

most importantly, even though we agree that test scores 
could be expected to be normally shaped in the popula-
tion, they are usually not normally distributed in nor-
mative samples. Certainly, partialling out the effects of 
demographic characteristics through regression analysis 
permits obtaining scores (i.e. adjusted scores) that do not 
have nonlinearity issues. However, adjusted scores might 
still be non-normally distributed [11, 12]. For example, 
some tests show a ceiling effect regardless of the demo-
graphic variables [11, 13]. Furthermore, the rank-based 
subdivision was the rule for identifying test cutoffs when 
TLs and ES methods were unavailable. In a review of nor-
mative neuropsychological studies, the authors divided 
the percentile distribution (from the 5th to the 50th) into 
three equal parts using percentile intervals [12].

In this paper, we propose that the calculation of the 
intermediate ESs should be based on a non-parametric 
rank subdivision of the adjusted scores distribution instead 
of a parametric distribution model (i.e. z-score). The 
advantage of the proposed approach is that partitioning 
the score distribution into three equal parts is performed 
regardless of the shape of the distribution, like those from 
a test’s error score. In this way, the three intermediate 
ESs have the same density, and consequently, the rank 
classification is more accurate. Furthermore, this method 
of rank subdivision permits defining each ES scale step 
as what it is: a rank scale. This paper aims to provide 
evidence of the good performance of the non-parametric 
approach to establishing intermediate ESs. To do this, 
we performed three simulation studies in which different 
score distributions were considered (i.e. non-parametric vs 
parametric). To further explore the rank-based approach, 
we also compared it with another simple approach that 
could be used to define the intermediate ESs which is 
based on the direct subdivision of the dependent variable 
into three equal groups from the OTL to the median. In 
the case of parametric distribution, this approach should 
correspond to the z-score subdivision. However, compared 
to the z-score approach, it is much simpler to implement. 
Finally, a guide for calculating the TLs and ESs and the R 
script to implement them is provided.

Methods

Three simulations were performed. In all the simulations, 
OTL and ITL were assessed using the non-parametric 
approach (i.e. npTL), while the intermediate ESs were com-
puted through the z-score approach, the rank subdivision 
approach, and the subdivision approach based on the value 
of the dependent variable. The normality of the distributions 
was checked using the Shapiro–Wilk test.
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In the first simulation (i.e. simulation A), we created a 
sample of 300 not-normally distributed scores. In this sam-
ple, the scores represent a test in which the lower the score, 
the better the performance, such as the execution time of a 
performance test [14] or a reaction time test [11]. Thus, the 
npTLs are one-sided in the right part of the distribution.

Like simulation A, simulation B was conducted on a sam-
ple of 300 not-normally distributed scores. However, in this 
simulation, the scores represent a test in which the higher 
score represents better performance, such as a memory recall 
test [15–17]. As a consequence, the npTLs are one-sided in 
the left part of the distribution.

Compared to the other simulations, simulation C was 
conducted on a sample of 1000 normally distributed 
scores, where the npTLs are one-sided in the left part of the 
distribution.

While the calculation of the ESs using a z-score-based 
approach is well described in the R script provided in 
[7], the R script for calculating ESs using the rank sub-
division approach is available at https:// osf. io/ v28x6/. 
This includes both commands for reporting the ES values 
and the observation number of the ESs. The interested 
users can easily adapt the R script by simply assigning 
the adjusted score of the target test to the variable “x” 
(see the R script). Once they adapt and run the script, 
the rank of the target observations, the ITL, the OTL, 
and the 4 cutoffs between the ES0 to ES4 is computed 
and reported. In addition to reporting the rank positions, 
ES points are accompanied by corresponding values for 
the tests. Statistical analyses and figures were performed 
with R statistical environment [18]. The calculation of 
TLs was performed using the tolerance package [19].

Results

Simulation A

The score distribution is not normally distributed 
(W = 0.98 p < 0.001), the median is represented by the 
151st observation, the ITL by the 280th, and the OTL 
by the 292nd. As Fig. 1 shows (upper panel), the cut-
off points of the intermediate ESs (i.e. ES1, 2, and 3) 
assume different values in the two approaches: the cutoff 
scores in the z-score approach are the 221st and 269th 
observations, while the cutoff scores in the rank subdivi-
sion approach are the 198th and 245th observations. The 
main difference between the rank and z-score approaches 
lies in the width of the intervals within ES1 and ES3 
(Table 1). In the rank-based approach, the width of the 
intervals among the ESs cutoffs on the dependent vari-
able is different. Still, they have equal density because 
the underlying rank division is the same. On the contrary, 

the z-score approach shows a similar size of steps on the 
dependent variable, but it relies on different underlying 
population densities. Finally, the direct subdivision of 
the dependent variable (i.e. the third approach we tested) 
is between 42.35 (151st observation) and 72.86 (292nd 
observation). The calculation reports the two cutoffs 
at 52.52 and 62.69, which correspond (at the nearest 
observation) to the 223rd and 268th observations. The 
complex z-score subdivision corresponds in this case (as 
visible in Fig. 1) to the simple subdivision based on the 
dependent variable score.

Simulation B

In this second simulation, the score distribution was non-
parametric (W = 0.97 p < 0.001), the OTL is represented by 
the 9th observation, the ITL by the 21st, and the median 
by the  151st. The cutoff points between ES1 and ES2 and 
between ES2 and ES3 are the 32nd and 80th observations 
using the z-score approach. In the rank-based approach, 
the cutoffs were the 56th and the 103rd. In this case, the 
cutoff points of the direct subdivision of the dependent 
variable are 6.79 (9th observation) and 38.21 (151st obser-
vation). The calculation reports the two cutoffs at 17.26 
and 27.73, which correspond (at the nearest observation) 
at 26th and 56th observations. The three approaches pro-
vide three different results in this simulation because they 
rely on different calculations.

The results of the z-score and rank-based approaches are 
comparable to those obtained in the first simulation, except 
for the slight difference with the median taken (151st in 
descending order versus ascending order). Conversely, the 
results of the score subdivision based on the dependent vari-
able distribution are different in the two simulations because 
the cutoff values depend strictly on the shape and steepness 
of the distribution in which the ESs fall (Table 2).

Simulation C

In the third scenario, the score distribution was set to 
be normal (W = 1, p = 0.99). Coherently with the chosen 
distribution, the parametric tolerance intervals were also 
calculated. Using a non-parametric calculation of the 
TLs, the OTL is represented by the 39th observation and 
the ITL by the 62nd observation. Their scores were 32.37 
and 34.61, respectively. The parametric calculation of 
the one side 95% TL with 95% CI was 32.82 and 34.41, 
respectively. The z-score approach places the intermedi-
ate ESs cutoffs at 120th and 278th observations, while 
the rank-based approach at the 193rd and 347th observa-
tions. The direct subdivision of the dependent variable 
gives 38.25 and 44.13, which correspond to the 120th 
and 279th observations.

https://osf.io/v28x6/
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In the case of the normal distribution, the z-score and 
the subdivision based on the dependent variable score, 
as expected, give the same results. Conversely, the rank-
based score subdivision gives three blocks of the same 

density of cases. The parametric calculation of TLs, in 
the case of normally distributed data, is quite similar to 
the non-parametric one (Table 3).

Fig. 1  Difference between the rank subdivision and z-score subdivi-
sion for the calculation of intermediate ESs. Notes: The reported data 
represent two examples of typical scoring in which (A) lower is better 
(e.g. task execution time) and (B) higher is better (e.g. memory recall 

task). The distribution represents simulated data from the R code 
reported online; see text for details. The shaded area in the ES1 area 
represents the uncertainty of classification between OTL and ITL

Table 1  Comparison of the ESs observation cutoff and population density between ESs among the three approaches (simulation A; N = 300)

Method ES3-ES2 observa-
tion rank

ES2-ES1 observa-
tion rank

ES3 density n (%) ES2 density n (%) ES1 density n (%)

Z-score 221 269 70 (23.33%) 48 (16%) 23 (7.67%)
Rank 198 245 47 (15.67%) 47 (15.67%) 47 (15.67%)
Dependent variable 223 268 72 (24%) 45 (15%) 24 (8%)
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Since a large part of the sample size is between 100 
and 600 healthy controls participants [12], a summary of 
the rank of the OTL, ITL together with ES1-ES2, ES2-
ES3, and the median is provided in Table 4. In case of a 
larger number of participants or different sample sizes, the 

R scripts we provided compute both the ranks and score 
values for the target sample size.

Discussion

In this paper, we aim to refine the method of calculat-
ing the ESs of neuropsychological tests. We provided the 
rationale for using the rank subdivision of ES score to 
enhance neuropsychological test norms. The provided 
simulation examples, with different sample sizes and dis-
tributions, showed that the rank subdivision was able (by 
definition) to resist skewed data. The other two approaches 
(i.e. the z-score and dependent variable score) give similar 
results when the adjusted score is normally distributed but 
different when the data are non-normally distributed.

The use of rank subdivision was motivated by its defi-
nition “Equivalent scores are based on the ranks of the 
adjusted scores; their nature is basically non-parametric, and 
does not depend on the test scores dispersion” (Capitani & 
Laiacona, 2017, p. 1224) [9]. This is in contrast with the 
use of the z-score approach used to define intermediate ESs. 
Different distributions lead to different results. To the best 
of our knowledge, the most appropriate solution remains the 
rank ES: for its simplicity, and because it closely follows the 
definition of ES, which is an “ordinal five-point scale that 
maps percentile ranks of adjusted scores of a test” (Capitani 
& Laiacona, 2017, p. 1223) [9]. The second advantage of 
rank-based ES is the resulting direct rank subdivision based 
on population density. There are a number of old and new 
pieces of evidence that the z-score subdivision does not pro-
duce an equal density subdivision in intermediate ES and 
consequently does not follow perfectly the ranking definition 
provided above [21–23].

Table 2  Comparison of the ESs observation cutoff and population density between ESs among the three approaches (simulation B; N = 300)

Method ES1-ES2 observa-
tion rank

ES2-ES3 observa-
tion rank

ES1 density n (%) ES2 density n (%) ES3 density n (%)

Z-score 32 80 23 (7.67%) 48 (16%) 71 (23.66%)
Rank 56 103 47 (15.67%) 47 (15.67%) 48 (16%)
Dependent variable 26 56 17 (5.67) 30 (10%) 95 (31.67%)

Table 3  Comparison of the ESs observation cutoff and population density between ESs among the three approaches (simulation C; N = 1000)

Method ES1-ES2 observa-
tion rank

ES2-ES3 observa-
tion rank

ES1 density n (%) ES2 density n (%) ES3 density n (%)

Z-score 120 278 81 (8.1%) 158 (15.8%) 223 (22.3%)
Rank 193 347 154 (15.4%) 154 (15.4%) 154 (15.4%)
Dependent variable 120 279 81 (8.1%) 159 (15.9%) 224 (22.4%)

Table 4  Summary rank observations that correspond to the OTL, 
ITL, Rank subdivision of ES1-2 and ES2-3, and median

Those unfamiliar with the R environment can use the rank values 
reported in this table to determine the cutoff values

Sample size OTL ITL 1ES-2ES 2ES-3ES Median

100 2 9 18 34 51
125 3 10 23 43 63
150 3 12 27 51 76
175 4 14 32 60 88
200 5 15 37 69 101
225 6 17 41 76 225
250 7 18 46 85 126
275 8 20 51 94 138
300 9 21 56 103 151
325 10 23 61 112 163
350 11 24 66 121 176
375 12 26 70 128 188
400 13 27 75 137 201
425 14 29 80 146 213
450 15 30 85 155 226
475 16 32 90 164 238
500 17 33 95 173 251
525 18 35 99 180 263
550 19 36 104 189 276
575 20 38 109 198 288
600 21 39 114 207 301
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However, rank-based ES scores have some clinical impli-
cations, both positive and negative. Given that our pro-
posed approach provides a more accurate subdivision of the 
ES1-ES3 values based on sample density, it has the main 
advantage of enhancing the accuracy of diagnosis. As can 
be seen from Fig. 1, the z-score approach yielded a nar-
rower ES1 width than the rank approach. Compared to the 
z-based approach, it will be easier to find more patients that 
fall into the ES1 and fewer in the ES2 with the rank-based 
approach. We recognize that classification based on these 
two approaches could change. Nevertheless, the clinical 
implications of this difference are minimal since the two 
most important points for the diagnosis remain unchanged: 
the ES0 and the ES4.

According to Capitani and Laiacona [20], the ES calcula-
tion (using the z-score method) also produces the same inter-
val on the z-axis. Therefore, a simple and similar method 
for defining ES1-ES3 based on the direct subdivision of the 
dependent variable was tested. The results show that the two 
procedures overlapped perfectly when the data had a normal 
distribution. When the data are non-parametric, the similar-
ity between these two methods depends only on the shape 
of the distribution. In simulation A, an approximate result 
was obtained, but the results were different in simulation 
B. For those unfamiliar with statistics, the cutoff definition 
based on the direct subdivision of the dependent variable is 
the simplest method. Furthermore, to avoid the calculation 
of rank ES cutoffs, we provide a simple table that reports all 
rank observations points.

One of the advantages of using ES is its intrinsic ease 
of interpretation and the fact that it is used in a wide range 
of neuropsychological tests. Using this approach, a full 
neuropsychological evaluation may be scored with a single 
scoring system and test results may be compared easily to 
identify specific deficits. However, the ES method presents 
some limitations. The few steps of ES have the disadvantage 
of including an extensive range of accurate scores. Conse-
quently, it is difficult to appreciate small differences in the 
case of the evaluation of rehabilitation. Secondly, we are 
aware that the more critical point for defining a pathological 
score is the OTL and the correspondent ES0. The intermedi-
ate ESs are aleatory, even more so with the procedure listed 
in this study. The two approaches for calculating ESs (i.e. 
z-score and rank) will need to be detailed in future norma-
tive data studies.

Whether a test has a double scoring system: percentiles 
and ES, there is the possibility of choosing one over the 
other according to the situation at hand. For example, a cli-
nician could use ES for reporting a clinical evaluation of 
a patient, but the same clinician could use percentile for 
rehabilitation evaluation [6]. In the case of bilateral scoring, 
i.e. lateralized scores, such as those used for spatial neglect 
evaluation, ES scoring could not be applied. In these cases, 

the 95% TL with 95% CI remain valid (OTL and ITL), but 
they need to be calculated on two sides, obtaining only two 
cutoffs (i.e. left and right) without using ES scoring [11, 
23–25].

In summary, subdividing intermediate ESs using the here 
so-called rank-subdivision of the distribution of the scores 
can improve the scoring of neuropsychological tests. Thus, 
future research aiming at scoring normative data should con-
sider the best procedures at the very least.
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